Validation of a model of motor function for children with cerebral palsy

Validation of a model of motor function for children with cerebral palsy

Validation of a model of motor function for children with cerebral palsy.

Development of model of motor function in children with cerebral palsy (CP) has not been documented. The purposes of this study were to examine a model of model of motor function in children with CP and to apply the model to construct gross motor function curves for each of the 5 levels of the Gross Motor Function Classification System (GMFCS). A stratified sample of 586 children with CP, 1 to 12 years of age, who reside in Ontario, Canada, and are known to rehabilitation centers participated. Subjects were classified using the GMFCS, and model of motor function was measured with the Gross Motor Function Measure (GMFM). Four models were examined to construct curves that described the nonlinear relationship between age and model of motor function. The model in which both the limit parameter (maximum GMFM score) and the rate parameter (rate at which the maximum GMFM score is approached) vary for each GMFCS level explained 83% of the variation in GMFM scores.

Huntington's disease (HD) is caused by an abnormal expansion of CAG repeats in the gene encoding huntingtin. The development of therapies for HD requires preclinical testing of drugs in animal models that reproduce the dysfunction and regionally specific pathology observed in HD. We have developed a new knock-in model of motor of HD with a chimeric mouse/human exon 1 containing 140 CAG repeats inserted in the murine huntingtin gene. These mice displayed an increased locomotor activity and rearing at 1 month of age, followed by hypoactivity at 4 months and gait anomalies at 1 year. Behavioral symptoms preceded neuropathological anomalies, which became intense and widespread only at 4 months of age. These consisted of nuclear staining for huntingtin and huntingtin-containing nuclear and neuropil aggregates that first appeared in the striatum, nucleus accumbens, and olfactory tubercle. Interestingly, regions with early pathology all receive dense dopaminergic inputs, supporting accumulating evidence for a role of dopamine in HD pathology.

Formant frequency data are reported for Swedish vowels produced both with fixed and unconstrained mandible. Measurements were made at the first glottal pulse to confine interpretation of the results to nonauditory feedback mechanisms. Results indicated that in spite of physiologically unnatural jaw openings, subjects were able to produce F patterns within the ranges of variation of the normal vowels. Results are explained by hypothesizing that the "instantaneous" learning of highly unfamiliar tasks, such as compensatory articulation of fixed‐mandible vowels, is possible because normal speech motor programming is indeed "compensatory" rather than due to either speakers drawing upon past similar experience or invoking special model of motor mechanisms distinct from those of natural speech. That is, it operates in a context‐sensitive mode to achieve listener‐oriented goals. Since "contexts" constitutes an essentially infinite class of events the programming must be "creative," or capable of handling conditions never before experienced.

The present study proposes a reproducible model of experimental degeneration of model of motor neurons in the rat. Avulsion of ventral roots in the adult lumbar cord transects model of motor axons at the root exit and leads to retrograde cell death of 80% of model of motor neurons 2 weeks later; this result follows a series of retrograde changes, including chromatolysis, loss of transmitter phenotype, and accumulation of phosphorylated neurofilaments in perikarya. Glial cells recruited at the site of retrograde injury express both microglia-specific epitopes (as exemplified by OX-42 immunoreactivity) and macrophage-specific markers (e.g., ED-1 immunoreactivity). Macrophage-specific markers become particularly intense 7 days postaxotomy and provide additional evidence of active phagocytosis of injured neurons. Ventral root avulsion is a very useful model for assessing mechanisms of motor neuron death and testing the ability of trophic factors and other agents to preserve the phenotype and promote the surviv.

 Validation of a model of motor function for children with cerebral palsy

Substantial evidence has established that the cerebellum plays an important role in the generation of movements. An important aspect of motor output is its timing in relation to external stimuli or to other components of a movement. Previous studies suggest that the cerebellum plays a role in the timing of movements. Here we describe a neural network model based on the synaptic organization of the cerebellum that can generate timed responses in the range of tens of milliseconds to seconds. In contrast to previous models, temporal coding emerges from the dynamics of the cerebellar circuitry and depends neither on conduction delays, arrays of elements with different time constants, nor populations of elements oscillating at different frequencies. Instead, time is extracted from the instantaneous granule cell population vector. The subset of active granule cells is time-varying due to the granule—Golgi—granule cell negative feedback.

Spinal muscular atrophy (SMA) is caused by homozygous mutation or deletion of the SMN1 gene encoding survival of motor neuron (SMN) protein, resulting in the selective loss of alpha-motor neurons. Humans typically have one or more copies of the SMN2 gene, the coding region of which is nearly identical to SMN1, except that a point mutation causes splicing out of exon 7 and production of a largely nonfunctional SMNDelta7 protein. The development of drugs that mitigate aberrant SMN2 splicing is an attractive therapeutic approach for SMA. A steric block antisense oligonucleotide (AO) has recently been developed that blocked an intronic splice suppressor element, and enhanced SMN2 exon 7 inclusion in SMA patient fibroblasts. Here, we show that periodic intracerebroventricular (ICV) delivery of this AO resulted in increased SMN expression in brain and spinal cord to as much as 50% of the level of healthy littermates. Real-time PCR of SMN2 transcripts confirmed the AO-mediated increase in full-length SMN.

A linear model of timing and error-corrections was constructed that aims at an explanation of the mechanisms underlying a subject's performance in an experimental paradigm, in which the task is to synchronize a sequence of motor acts to a sequence of stimuli. The model consists of two error-corrective mechanisms: (1) corrections of period (inverted frequency) of the sequence of responses; (2) corrections of phase shift of that sequence (synchronization error). In this paper, the influence of the physiologically justifiable model variables and of initial conditions on the steady-state response sequence as well as the stability of performance of the model are analyzed. The model is stable for error-correction gains in the range from 0 to 2. Comparison with known empirical data supports the assumption that reasonable values are less than 1. Furthermore, an alternative to the basic linear model is introduced in which the possible character of the process of subjective acquisition of the synchronization error is discussed.

 Validation of a model of motor function for children with cerebral palsy

A closed-loop timing model is proposed that accounts for several phenomena observed in tasks which require production of a sequence of motor acts in synchrony with a sequence of stimuli. In contrast to the previous models, variables available to the central nervous system of a subject (internal variables) and externally measurable variables are distinguished, and several physiologically justifiable internal variables are included. The model assumes the existence of (a) an internal time-keeper producing a reference interval that is used in a motor-control unit for timing of the next motor command; (b) an intrinsic (subjective) synchrony that relies on some a posteriori (feedback) information about the already executed onset of the motor act. A two-way error-corrective mechanism is hypothesized: (1) period (inverted frequency) corrections — the reference interval (period) is set at the beginning of the task according to the interstimulus-onset interval (s) and later corrected for differ.

Fuel optimizers are decision models (software products) that are increasingly recognized as effective fuel management tools by U.S. truckload carriers. Using the latest price data of every truck stop, these models calculate the optimal fueling schedule for each route that indicates: (i) which truck stop(s) to use, and (ii) how much fuel to buy at the chosen truck stop(s) to minimize the refueling cost. In the current form, however, these models minimize only the fuel cost, and ignore or underestimate other costs that are affected by the models' decision variables. On the basis of the interviews with carrier managers, truck drivers, and fuel-optimizer vendors, this article proposes a comprehensive model of motor-carrier fuel optimization that considers all of the costs that are affected by the model's decision variables. Simulation results imply that the proposed model not only attains lower vehicle operating costs than the commercial fuel optimizers, but also gives solutions that are more desirable from the drivers' viewpoint.

Intraspinal grafting of human neural stem cells represents a promising approach to promote recovery of function after spinal trauma. Such a treatment may serve to: I) provide trophic support to improve survival of host neurons; II) improve the structural integrity of the spinal parenchyma by reducing syringomyelia and scarring in trauma-injured regions; and III) provide neuronal populations to potentially form relays with host axons, segmental interneurons, and/or α-motoneurons. Here we characterized the effect of intraspinal grafting of clinical grade human fetal spinal cord-derived neural stem cells (HSSC) on the recovery of neurological function in a rat model of acute lumbar (L3) compression injury. Three-month-old female Sprague–Dawley rats received L3 spinal compression injury. Three days post-injury, animals were randomized and received intraspinal injections of either HSSC, media-only, or no injections. All animals were immunosuppressed with tacrolimus, mycophenolate mofetil, and methylprednisolone acetate from the day of cell grafting and survived for eight weeks.

We have shown previously that administration of quercetin after spinal cord injury in a rat model induced significant recovery of motor function. In the same model for spinal cord compression injury, we now have correlated the treatment duration with the extent to which motor function is recovered. METHODS: Seventy-four male Wistar rats were assigned to eight experimental groups. Mid-thoracic spinal cord injury was produced in the animals of seven groups. Quercetin was administered intraperitoneally in individual doses of 25 micromol kg(-1). Treatment onset was 1 h after the injury. The length of treatment ranged from one single injection to 10 days, with injection frequencies of two or three times daily. BBB (Basso, Beattie and Bresnahan) scores were obtained and tissue preservation at the site of injury was analyzed. RESULTS: None of the untreated control animals recovered motor function sufficient to walk. When quercetin was administered twice daily over a period of either 3 or 10 days, about 50% of the animals recovered sufficient motor function to walk.

 Validation of a model of motor function for children with cerebral palsy

Steady-state analysis is performed on the kinetic model for the switch complex of the flagellar motor of Halobacterium salinarum (Nutsch et al. [16]). The existence and uniqueness of a positive steady-state of the system is established and it is demonstrated why the steady-state is centered around the competent phase, a state of the motor in which it is able to respond to light stimuli. It is also demonstrated why the steady-state shifts to the refractory phase when the steady-state value of the response regulator CheYP increases. This work is one aspect of modeling in systems biology wherein the mathematical properties of a model are established.

The full range of causative factors in Amyotrophic lateral sclerosis (ALS) remains elusive, but oxidative stress is recognized as a contributing factor. Mutations in Cu/Zn superoxide dismutase 1 (SOD-1), associated with familial ALS, promote widespread oxidative damage. Mice-expressing G93A mutant human SOD-1 mice display multiple pathological changes characteristic of ALS and are therefore useful for therapeutic development. Dietary supplementation with S-adenosyl methionine (SAM) has provided multiple neuroprotective effects in mouse models of age-related cognitive pathology. We examined herein whether SAM supplementation could affect the course of motor neuron pathology in mice-expressing mutant human SOD- SAM delayed disease onset by 2–3 weeks. SAM also delayed hallmarks of neurodegeneration in these mice and in ALS, including preventing loss of motor neurons, and reducing gliosis, SOD-1 aggregation, protein.

Electromyographical analyses of pre-symptomatic motor unit loss in the SOD1 transgenic mouse model of amyotrophic lateral sclerosis (ALS) have yielded contradictory findings as to the onset and time course. We recorded hindlimb muscle and motor unit isometric forces to determine motor unit number and size throughout the life span of the mice. Motor unit numbers in fast-twitch tibialis anterior, extensor digitorum longus and medial gastrocnemius muscles declined from 40 days of age, 50 days before reported overt symptoms and motoneuron loss. Motor unit numbers fell after overt symptoms in the slow-twitch soleus muscle. Muscle forces declined in parallel with motor unit numbers, indicating little or no functional compensation by sprouting. Early muscle-specific decline was due to selective preferential vulnerability of large, fast motor units, innervated by large motoneurons. Large motoneurons are hence the most vulnerable in ALS with die-back occurring prior to overt symptoms. We conclude that size of motoneurons, their axons, and their motor unit size are important.

Urinary incontinence is a debilitating condition that affects primarily elderly individuals. One major mechanism results from chronic denervation of the striated urethral sphincter with associated fibrosis. The authors investigated the fate of muscle precursor cells (MPC) injected into a model of striated urethral sphincter injury that reproduces the histopathologic changes of sphincter insufficiency. The striated urethral sphincter of older male rats was damaged by electrocoagulation. MPC were isolated from limb myofiber explants, infected with an adenovirus carrying the transgene encoding beta-galactosidase, and injected into the sphincter of the same animal 37 days after injury. Animals were killed 5 and 30 days after injection for assessment of sphincter function and the formation of motor units. Electrocoagulation resulted in an irreversible destruction of both sphincteric myofibers and nerve endings, with a functional incapacity of the damaged sphincter to sustain an increase in bladder pressure; atrophy and fibrosis developed after 1 month.

The childhood motor neuron disease spinal muscular atrophy (SMA) results from reduced expression of the survival motor neuron (SMN) gene. Previous studies using in vitro model systems and lower organisms have suggested that low levels of Smn protein disrupt prenatal developmental processes in lower motor neurons, influencing neuronal outgrowth, axon branching and neuromuscular connectivity. The extent to which these developmental pathways contribute to selective vulnerability and pathology in the mammalian neuromuscular system in vivo remains unclear. Here, we have investigated the pre-symptomatic development of neuromuscular connectivity in differentially vulnerable motor neuron populations in Smn(-/-);SMN2 mice, a model of severe SMA. We show that reduced Smn levels have no detectable effect on morphological correlates of pre-symptomatic development in either vulnerable or stable motor units, indicating that abnormal pre-symptomatic developmental processes are unlikely to be a prerequisite for subsequent pathological changes.

 Validation of a model of motor function for children with cerebral palsy

The primary hypothesis of this study was that the cough motor pattern is produced, at least in part, by the medullary respiratory neuronal network in response to inputs from "cough" and pulmonary stretch receptor relay neurons in the nucleus tractus solitarii. Computer simulations of a distributed network model with proposed connections from the nucleus tractus solitarii to ventrolateral medullary respiratory neurons produced coughlike inspiratory and expiratory motor patterns. Predicted responses of various "types" of neurons (I-DRIVER, I-AUG, I-DEC, E-AUG, and E-DEC) derived from the simulations were tested in vivo. Parallel and sequential responses of functionally characterized respiratory-modulated neurons were monitored during fictive cough in decerebrate, paralyzed, ventilated cats. Coughlike patterns in phrenic and lumbar nerves were elicited by mechanical stimulation of the intrathoracic trachea. Altered discharge patterns were measured in most types of respiratory neurons during fictive cough.

The autosomal recessive mutation mnd2 results in early onset motor neuron disease with rapidly progressive paralysis, severe muscle wasting, regression of thymus and spleen, and death before 40 days of age. mnd2 has been mapped to mouse chromosome 6 with the gene order: centromere-Tcrb-Ly-2-Sftp-3-D6Mit4-mnd2-D6Mit6, D6Mit9-D6Rck132-Raf-1, D6Mit11-D6Mit12-D6Mit14. mnd2 is located within a conserved linkage group with homologs on human chromosome 2p12-p13. Spinal motor neurons of homozygous affected animals are swollen and stain weakly, and electromyography revealed spontaneous activity characteristic of muscle denervation. Myelin staining was normal throughout the neuraxis. The clinical observations are consistent with a primary abnormality of lower motor neuron function. This new animal model will be of value for identification of a genetic defect responsible for motor neuron disease and for evaluation of new therapies.

Parkinson's disease (PD) is a common neurodegenerative disease that exhibits motor dysfunctions, such as tremor, akinesia and rigidity. In the present study, we investigated whether swim-test could be used as one of the behavioural monitoring techniques to study motor disability in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in two mouse strains, Balb/c and C57BL/6. Mice were treated with different doses of MPTP (10, 20 and 30 mg/kg, twice, 16 h apart), and were subjected to swim-test on the third day of the first MPTP injection. MPTP-induced tremor was monitored at 30 min, and akinesia and rigidity developed were studied 3 h after the second MPTP treatment. While tremor and akinesia produced were dose-dependent and the intensity of tremor was comparable in the two strains of mice studied, the latter response in C57BL/6 was significantly lesser than that observed in Balb/c. Rigidity exhibited in Balb/c mice were dose-dependent, but not in C57BL/6.

Various evidence suggests that amyotrophic lateral sclerosis (ALS) selectively affects motor neuron functioning, but electrophysiological alterations of single motor neurons in ALS remains to be documented. In the present work, the excitability of motor neurons has been tested in a transgenic mouse model of a familial form of ALS, associated with a mutation in Cu,Zn superoxide dismutase (Gly 93→Ala). Patch-clamp recordings of membrane potential in transgenic mice motor neurons showed that they fire with increased frequency and shorter duration compared to motor neurons from control mice. The passive membrane properties of these neurons were equivalent however. Such results suggest that an altered motor neuron excitability accompanies an ALS associated mutation and that may contribute to the pathogenesis of the disease.

Validation of a model of motor function for children with cerebral palsy

Cell replacement therapy has been widely suggested as a treatment for multiple diseases including motor neuron disease. A variety of donor cells have been tested for treatment including isolated preparations from bone marrow and embryonic spinal cord. Another cell source, Sertoli cells, have been successfully used in models of diabetes, Parkinson's disease and Huntington's disease. The ability of these cells to secrete cytoprotective proteins and their role as 'nurse cells' supporting the function of other cell types in the testes suggest their potential use as neuroprotective cells. The current study examines the ability of Sertoli cells injected into the parenchyma of the spinal cord to protect motor neurons in a mouse model for amyotrophic lateral sclerosis. Seventy transgenic mice expressing the mutant (G93A) human Cu–Zn superoxide dismutase (SOD1) received a unilateral spinal injection of Sertoli-enriched testicular cells into the L4–L5 ventral horn (1×105 cells total) prior to the onset of clinical symptoms.

A newly developed bacterial artificial chromosome transgenic mouse model (BACHD) reproduces phenotypic features of HD including predominantly neuropil-associated protein aggregation and progressive motor dysfunction with selective neurodegenerative pathology. Motor dysfunction has been shown to precede neuropathology in BACHD mice. We therefore investigated the progression of synaptic pathology in pyramidal cells and interneurons of the superficial motor cortex of BACHD mice. Whole-cell patch clamp recordings were performed on layer 2/3 primary motor cortical pyramidal cells and parvalbumin interneurons from BACHD mice at 3 months, when the mice begin to demonstrate mild motor dysfunction, and at 6 months, when the motor dysfunction is more severe.

The motor neuron degeneration mutation ( Mnd ) causes a late-onset, progressive degeneration of upper and lower motor neurons in mice. After establishing genetic and environmental conditions that distinguish the phenotypes of Mnd/Mnd from +/ Mnd mice, Mnd was mapped to proximal Chr 8, using endogenous retroviruses as markers. The map location was confirmed with additional linked polymorphic markers. The outcross/intercross matings to the strain AKR/J, which were used to follow the segregation of the retroviral markers with respect to Mnd , also revealed the existence of a timing effect. Approximately one-fourth of the affected Mnd/Mnd F2 progeny showed accelerated disease. The Mnd mouse model should allow study of mechanisms affecting onset and progression of specific neuronal degeneration in both animal and human neurological disease.

Establishing human cell models of spinal muscular atrophy (SMA) to mimic motor neuron-specific phenotypes holds the key to understanding the pathogenesis of this devastating disease. Here, we developed a closely representative cell model of SMA by knocking down the disease-determining gene, survival motor neuron (SMN), in human embryonic stem cells (hESCs). Our study with this cell model demonstrated that knocking down of SMN does not interfere with neural induction or the initial specification of spinal motor neurons. Notably, the axonal outgrowth of spinal motor neurons was significantly impaired and these disease-mimicking neurons subsequently degenerated. Furthermore, these disease phenotypes were caused by SMN-full length (SMN-FL) but not SMN-Delta 7 (lacking exon 7) knockdown, and were specific to spinal motor neurons. Restoring the expression of SMN-FL completely ameliorated all of the disease phenotypes, including specific axonal defects and motor neuron loss. Finally, knockdown of SMN-FL led to excessive mitochondrial oxidative stress.

 

 Geared Motors And Electric Motor Manufacturer

The best service from our transmission drive expert to your inbox directly.

Get in Touch

Yantai Bonway Manufacturer Co.ltd

ANo.160 Changjiang Road, Yantai, Shandong, China(264006)

T+86 535 6330966

W+86 185 63806647

© 2024 Sogears. All Rights Reserved.